Transformations of Graphs Question Paper

Course	EdexcelIGCSEMaths
Section	3. Sequences, Functions & Graphs
Topic	Transformations of Graphs
Difficulty	Hard

Time allowed: 60

Score: /46

Percentage: /100

Question la

The graph of y = f(x) is shown on each of the grids.

On this grid, sketch the graph of y = f(x-3)

Question 1b

On this grid, sketch the graph of y = f(-x) + 2

Question 2a

The graph of y = f(x) is shown on both grids below

On the grid above, sketch the graph of y = f(-x)

[1 mark]

Question 2b

On this grid, sketch the graph of y = -f(x) + 3

[1 mark]

Question 3a

This is a sketch of the curve with the equation y = f(x).

The only minimum point of the curve is at P(3, -4).

Write down the coordinates of the minimum point of the curve with the equation y = f(x-2)

[2 marks]

Question 3b

Write down the coordinates of the minimum point of the curve with the equation y = f(x+5)+6

[2 marks]

Question 4

The graph of y = f(x) is transformed to give the graph of y = -f(x + 3)The point A on the graph of y = f(x) is mapped to the point P on the graph of y = -f(x + 3)

The coordinates of point A are (9, 1)

Find the coordinates of point P.

ГЭ			_1
1/	ma	ark	SI

The graph of the curve C with equation y = f(x) is transformed to give the graph of the curve S with equation y = f(-x) - 3

The point on C with coordinates (7, 2) is mapped to the point Q on S.

Find the coordinates of Q.

[2 marks]

Question 6

The graph of y = h(x) intersects the x-axis at two points. The coordinates of the two points are (-1, 0) and (6, 0)

The graph of y = h(x + a) passes through the point with coordinates (2, 0), where a is a constant.

Find the two possible values of a

[2 marks]

Question 7a

The curve C has equation y = f(x) where $f(x) = 9 - 3(x + 2)^2$

The point A is the maximum point on \mathbb{C} .

Write down the coordinates of A.

[1 mark]

Question 7b

The curve ${\bf C}$ is transformed to the curve ${\bf S}$ by a translation of $\begin{pmatrix} 4 \\ 0 \end{pmatrix}$

Find an equation for the curve ${\bf S}$.

[1 mark]

Question 7c

The curve \boldsymbol{C} is transformed to the curve \boldsymbol{T} .

The curve **T** has equation $y = 3(x + 2)^2 - 9$

Describe fully the transformation that maps curve ${f C}$ onto curve ${f T}$.

[1 mark]

Question 8

The curve **S** has equation y = f(x) where $f(x) = x^2$ The curve **T** has equation y = g(x) where $g(x) = 2x^2 - 12x + 13$

By writing g(x) in the form $a(x-b)^2-c$, where a, b and c are constants, describe fully a series of transformations that map the curve $\bf S$ onto the curve $\bf T$.

[4 marks]

The graph of $y = a\cos(x - b)^{\circ} + c$ for $-180 \le x \le 360$ is drawn on the grid below.

Find the value of a, the value of b and the value of c.

a	=					 ٠.	 																	 	 			
b	=					 	 									 								 	 			
() =	=						 									 											

[3 marks]

Question 10

The equation of a curve \mathbf{C} is $y = x^2 + 3x + 4$

The curve \mathbf{C} is transformed to curve \mathbf{S} under the translation $\begin{pmatrix} 4 \\ 6 \end{pmatrix}$

Find an equation of curve ${\bf S}$.

You do need to simplify the equation.

Question 11a

The function f(x) is defined as $f(x) = 3 - 8x - 2x^2$

Find the coordinates of the turning point on the graph of y = f(x)

[3 marks]

Question 11b

Using your result from part (a) write down the coordinates of the turning point on the following graphs:

$$y = f(x) + 2$$

[1]

$$y = f(x-3)$$

[1]

$$y = f(4x)$$

[1]

$$y = -f(x)$$

[1]

$$y = 3f(x+1)$$

[2] **[6 marks]**

The graph of $y = x^3 + 6$ is translated 4 units to the right.

The translated graph has equation y = f(x)

Work out f(x).

Give your answer in the form $x^3 + ax^2 + bx + c$ where a, b and c are integers.

[4 marks]

Curve P has equation $y = 2(x - 1)^2 - 5$

Curve Q is a reflection in the y-axis of curve P.

Work out the equation of curve Q.

Give your answer in the form $y = ax^2 + bx + c$ where a, b and c are integers.

[3 marks]

Question 14

For all values of X

$$f(x) = \sin x$$

$$g(x) = x + 90$$

On the grid, draw the graph of the composite function y = fg(x) for $0^{\circ} \le x \le 360^{\circ}$

www.mikedemy.com