Transformations of Graphs Question Paper

Course	EdexcellGCSE Maths
Section	3. Sequences, Functions \& Graphs
Topic	Transformations of Graphs
Difficulty	Hard

Time allowed:

60

Score: /46
Percentage: /100

Question la

The graph of $y=\mathrm{f}(x)$ is shown on each of the grids.
On this grid, sketch the graph of $y=\mathrm{f}(x-3)$

Question 1b

On this grid, sketch the graph of $y=f(-x)+2$

Question 2a

The graph of $y=\mathrm{f}(x)$ is shown on both grids below

On the grid above, sketch the graph of $y=f(-x)$

Question 2b

On this grid, sketch the graph of $y=-\mathrm{f}(x)+3$

Question 3a

This is a sketch of the curve with the equation $y=\mathrm{f}(x)$.
The only minimum point of the curve is at $P(3,-4)$.

Write down the coordinates of the minimum point of the curve with the equation $y=f(x-2)$

Question 3b

Write down the coordinates of the minimum point of the curve with the equation $y=f(x+5)+6$

Question 4

The graph of $y=\mathrm{f}(x)$ is transformed to give the graph of $y=-\mathrm{f}(x+3)$
The point A on the graph of $y=\mathrm{f}(x)$ is mapped to the point P on the graph of $y=-\mathrm{f}(x+3)$
The coordinates of point A are $(9,1)$
Find the coordinates of point P.

Question 5

The graph of the curve C with equation $y=f(x)$ is transformed to give the graph of the curve S with equation $y=\mathrm{f}(-x)-3$

The point on C with coordinates $(7,2)$ is mapped to the point Q on S.
Find the coordinates of Q.

Question 6

The graph of $y=h(x)$ intersects the x-axis at two points.
The coordinates of the two points are $(-1,0)$ and $(6,0)$
The graph of $y=h(x+a)$ passes through the point with coordinates $(2,0)$, where a is a constant.

Find the two possible values of a

Question7a

The curve C has equation $y=\mathrm{f}(x)$ where $\mathrm{f}(x)=9-3(x+2)^{2}$
The point A is the maximum point on \mathbf{C}.
Write down the coordinates of A.

Question 7b

The curve \mathbf{C} is transformed to the curve \mathbf{S} by a translation of $\binom{4}{0}$
Find an equation for the curve \mathbf{S}.
[1 mark]

Question 7c

The curve \mathbf{C} is transformed to the curve \mathbf{T}.
The curve \mathbf{T} has equation $y=3(x+2)^{2}-9$
Describe fully the transformation that maps curve \mathbf{C} onto curve \mathbf{T}.

Question 8

The curve \mathbf{S} has equation $y=\mathrm{f}(x)$ where $\mathrm{f}(x)=x^{2}$
The curve \mathbf{T} has equation $y=\mathrm{g}(x)$ where $\mathrm{g}(x)=2 x^{2}-12 x+13$
By writing $\mathrm{g}(x)$ in the form $a(x-b)^{2}-c$, where a, b and c are constants, describe fully a series of transformations that map the curve \mathbf{S} onto the curve \mathbf{T}.

Question 9

The graph of $y=a \cos (x-b)^{\circ}+c$ for $-180 \leqslant x \leqslant 360$ is drawn on the grid below.

Find the value of a, the value of b and the value of c.
\qquad
-
$c=$
[3 marks]

Question 10

The equation of a curve \mathbf{C} is $y=x^{2}+3 x+4$
The curve \mathbf{C} is transformed to curve \mathbf{S} under the translation $\binom{4}{6}$
Find an equation of curve \mathbf{S}.
You do need to simplify the equation.

Question 11a

The function $f(x)$ is defined as $f(x)=3-8 x-2 x^{2}$
Find the coordinates of the turning point on the graph of $y=f(x)$

Question 11b

Using your result from part (a) write down the coordinates of the turning point on the following graphs:
(i)
$y=f(x)+2$
(ii)
$y=f(x-3)$
(iii)
$y=f(4 x)$
(iv)
$y=-f(x)$
(v)
$y=3 f(x+1)$

Question 12

The graph of $y=x^{3}+6$ is translated 4 units to the right.
The translated graph has equation $y=\mathrm{f}(x)$
Work out $\mathrm{f}(x)$.
Giveyour answer in the form $x^{3}+a x^{2}+b x+c$ where a, b and c are integers.

Question 13

Curve P has equation $y=2(x-1)^{2}-5$
Curve Q is a reflection in the y-axis of curve P.
Work out the equation of curve Q .
Giveyour answer in the form $y=a x^{2}+b x+c$ where a, b and c are integers.

Question 14

For all values of X

$$
\begin{aligned}
& \mathrm{f}(x)=\sin x \\
& \mathrm{~g}(x)=x+90
\end{aligned}
$$

On the grid, draw the graph of the composite function $y=\mathrm{fg}(x)$ for $0^{\circ} \leqslant x \leqslant 360^{\circ}$

